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Abstract
We derive a new integrable system of evolutions describing the dynamics of
the transverse strain waves propagating in a bulk crystal with ion impurities
possessing the spin-1/2. This system describes the evolution of the picosecond
acoustic pulses corresponding to ‘a few cycle pulses’. The Lax representation
for this system and its particular cases are presented. Soliton solutions
corresponding to the common and particular cases are found.

PACS numbers: 41.20.Jb, 42.50.md, 43.25.+y

1. Introduction

The existence of different physical mechanisms for opto-acoustical interaction enables the
generation of acoustical pulses of picosecond duration [1–3]. Since the early 1970s there
has been work with electromagnetic-pulse acoustic self-induced transparency (ASIT) on
paramagnetic impurities [4, 5]. A set of papers have recently been devoted to the experimental
and theoretical investigation of spin–phonon avalanches in paramagnetic crystal with spin-1/2
impurities; see, for example, [6, 7].

The theory of ASIT for a transverse pulse propagating in the direction parallel to magnetic
field in a spin system with S = 1/2 was developed, for example, in [5, 8, 9]. In this
theory, the equations describing the acoustic-pulse dynamics under a number of simplifying
assumptions were reduced to both nonintegrable and well-known simple integrable models.
For the picosecond acoustic pulses, slow envelope approximation cannot be applied as a
rule. Therefore, an analogy with conventional theory of optical self-induced transparency for
quasi-monochromatic waves does not apply.

2. Derivation of model

The main purpose of this paper is the study of the new transverse acoustic-pulse dynamics in
anisotropic paramagnetic crystal. More precisely, we consider anisotropic interaction of the
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transverse sound waves and spin system. At the same time we assume that phase velocities
of the components of this sound wave propagating in a one-dimensional medium are equal
to each other. This situation takes place in elastically isotropic crystals, such as alkali metal
halides with central interaction forces between the atoms [10].

For this purpose, a new general integrable model that describes the one-dimensional
dynamics of pulses propagating in a crystal with paramagnetic impurities with spin S = 1/2
is proposed without using the slow envelope approximation for amplitudes of the pulses. We
show that the inverse scattering transform method (ISTM) [11] can be applied to this system
and we derive integral Marchenko equations.

To derive a physical model we consider a crystal that is at the temperature of liquid helium.
Since the pulse is very short, we also neglect the relaxation terms in the equations for the spin
movement.

We assume that a homogeneous static external magnetic field B is directed along the
z-axis. Let us suppose a strain pulse propagates along the z-axis. We consider only pulses
of lateral strain in a crystal which has a symmetry that belongs to the rhombic system [12].
The Hamiltonian of the system ‘strain plus paramagnetic impurities’ can then be written in
the form

H =
∫ {

nβ0B0 · ĝS +
1

2ρ0

(
P 2

x + P 2
y

)
+

ρ0

2

[
α2

x

(
∂ux

∂z

)2

+ α2
y

(
∂uy

∂z

)2
]}

dr (1)

where ρ0 is the average medium density, ux and uy are the components of lateral displacements
in solids, Px(y) = ρ0∂ux(y)/∂t, n is the concentration of paramagnetic centres, αx(y) is the
velocity of the lateral strain wave at the displacement in the x(y) direction in the absence
of paramagnetic impurities, β0 is the Bohr magneton, S = (σ̂x, σ̂y, σ̂z) is the effective spin
of s ion impurity, and ĝ is the Landé tensor. We assume that S = 1/2 and σ̂γ are the
Pauli matrices. The constants vx and vy are related to the elastic moduli of a crystal [12]:
v2

x = c55/ρ0 = α2
x/2, v2

y = c44/ρ0 = α2
y/2. The axes of x, y and z are perpendicular to the

planes of crystal symmetry. The Landé tensor can be written in the form

ĝ = ĝ0 + δĝ (2)

where ĝ0 is the Landé tensor in the absence of crystal strain such that

B0 · ĝ0S = B0gzzσ̂z (3)

and δĝ is disturbance due to the strain pulse. For lateral strain pulses, we have (see, for
example, [5])

B0 · δĝ S = B0gzz(Fxσ̂x∂ux/∂z + Fxσ̂x∂ux/∂z) (4)

where Fx = Fxzxz, Fy = Fyzyz are the components of spin–strain interaction. Using the
Hamiltonian formalism with respect to equations (1)–(4) gives

∂ux(y)/∂t = δH/δPx(y) ∂Px(y)/∂t = −δH/δux(y). (5)

We denote the components of the stress tensor

Exz = ∂ux

∂z
Eyz = ∂uy

∂z
.

We use here a quasi-classical description of the spin–phonon interaction, i.e. acoustic
fields (components of the strain tensor Ex(y)) are classical but the spin system is treated as a
quantum system. In this approximation, operators describing the spin system couple to each
other only by means of a propagating acoustic field. In such a case, quantum averaging means
that we replace a spin operator to a classical scalar component of the vector S = (Sx, Sy, Sz).
After this quantum averaging using equation (5), we find the following evolution equations
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∂2Exz

∂t2
− v2

x

∂2Exz

∂z2
= qx

∂2Sx

∂z2
(6)

∂2Eyz

∂t2
− v2

y

∂2Eyz

∂z2
= qy

∂2Sy

∂z2
(7)

where qx(y) = nh̄ω0Fx(y)/ρ0, ω0 = gzzβ0B0/h̄, h̄ is the Plank constant, Sγ = Tr σ̂γ ρ̂/2,

Sz = 1

2
(ρ11 − ρ22) Sx = 1

2
(ρ12 + ρ21) Sy = i

2
(ρ12 − ρ21)

and S2
z + S2

x + S2
y = 1. ρ̂ is the density matrix of a two-level transition between the Zeeman

level. For the density matrix we have the Heisenberg equations

ih̄
∂ρ̂

∂t
= [Ĥ , ρ̂]. (8)

Using equation (8) we derive the following Bloch equations for the spin S components

∂

∂t
Sx = −ω0Sy + ω0fyEySz (9)

∂

∂t
Sy = ω0Sx − ω0fxExSz (10)

∂

∂t
Sz = ω0(fxExSy − fyEySx) (11)

where fx(y) = Fx(y)h̄
−1ω−1

0 .

To find an integrable reduction of the model we have to impose a few physical restrictions.
As pointed out already, we neglect relaxations and assume that the phase velocities of waves are
equal: vx = vy = v. In real media, the concentration of paramagnetic impurities can often be
considered small. Then, it is possible to apply the unidirectional propagation approximation
similar to that used in [13] for deriving the reduced Maxwell–Bloch equations for a two-
level optical medium. In this case, we can write the following formal approximate equality,
∂z = −v∂t +O(ε), where ε is a small parameter. The normalized impurity concentration is of
the same order of smallness as the derivative ∂z + v−1∂t of the acoustic field amplitudes. The
derivative with respect to z on the right-hand sides of equations (6) and (7) can be replaced by
v−1∂t with an accuracy of O(ε2).

Using the above approximations and taking the moving system of coordinates, we derive
the following new integrable system of evolution equations

∂Sx

∂τ ′ = −Sy + EySz

∂Sy

∂τ ′ = Sx − ExSz

∂Sz

∂τ ′ = ExSy − EySx

∂Ex

∂χ
= ∂Sx

∂τ ′
∂Ey

∂χ
= r2 ∂Sy

∂τ ′

(12)

where r = Fy/Fx,Ex(y) = fx(y)Ex(y), τ
′ = ω0(t − v−1z), χ = zqxFx(2vh̄)−1.

3. The ISTM technique

The Lax representation for system (12) has the following compact form

∂τ ′� = 1

2

( −i cn dn dn Ex − i cn Ey

−dn Ex − i cn Ey i cn dn

)
� ≡ L̂� (13)

∂χ� = 1

2sn2

( −i cn dn Sz dn Sx − i cn Sy

−dn Sx − i cn Sy i cn dn Sz

)
� ≡ Â�. (14)
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Here we use the parametrization by the Jacobi elliptic functions, sn = sn(ζ, r), cn =
cn(ζ, r) = √

1 − sn2, dn = dn(ζ, r) = √
1 − r2sn2, where ζ is a spectral parameter, and

r is the modulus of the Jacobi functions.
The Lax presentation of system (12) admits the algebraic forms of dependence of the

spectral parameter for the nonoverlapping r values: |r| = 1, for r = 0, and for |r| �= 1, r �= 0.
In the isotropic case, |r| = 1, the Lax pair (13) and (14) reduces to the form

∂τ ′� = 1

2

( −iξ 2 ξ(Ex − iEy)

−ξ(Ex + iEy) iξ 2

)
� ≡ L̂1� (15)

∂χ� = 1

2(1 − ξ 2)

( −iξ 2Sz ξ(Sx − iSy)

−ξ(Sx + iSy) ξ 2Sz

)
� ≡ Â1� (16)

where ξ is the new spectral parameter. The spectral problem (15) is of the Kaup–Newell type
[14].

For the limit of the strong anisotropy of interaction, r = 0, we derive from equations (13)
and (14) the following Lax pair

∂τ ′� = 1

2

( −iλ Ex − iλEy

−Ex − iλEy iλ

)
� ≡ L̂0� (17)

∂χ� = 1

2(1 − λ2)

( −iλSz Sx − iλSy

−Sx − iλSy λSz

)
� ≡ Â0� (18)

where λ is the new spectral parameter and Ey is now an arbitrary real function of the variable
τ ′. Physically, such a situation may correspond to a case when a short acoustic pulse Ex

polarized along the x-axis propagates in the positive direction along the z-axis. An additional
acoustic field with the amplitude Ey propagates along the z-axis in the opposite direction.
It can be shown that in a coordinate system moving with the pulse Ex we can neglect the
dependence of the field Ey on χ with an accuracy O(ε). Therefore, Ey is a function of τ ′ only.

Under the assumptions that Ey(τ
′) ≡ const and r = 0, system (12) can be transformed to

the equations describing unidirectional propagation of electromagnetic pulses in a two-level
media. Indeed, we denote

Rx = Sx Ry = Sy − EySz

�
Rz = EySy + Sz

�
(19)

where � =
√

1 + E2
y, then system (12) for the components of the vector R = (Rx, Ry, Rz)

and the field Ex becomes

∂τ ′Rx = −Ry� (20)

∂τ ′Ry = Rx� − ExRz (21)

∂τ ′Rz = ExRy (22)

∂χEx = −�Ry. (23)

System (20)–(23) is formally equivalent to the reduced Maxwell–Bloch equations [13]
describing interaction of a linearly polarized light pulse with a nondegenerate two-level system.

Thus, the spectral problem (13) includes as particular cases the Kaup–Newell spectral
problem and the Zakharov–Shabat spectral problem for real potential.

Let us return to the main integrable system (12). Consider the meanings of parameter r
that |r| �= 1 and r �= 0. For this case, we are able to derive an algebraic parametrization of the
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Lax pair for system (12) introducing the new spectral parameter ξ by the following equivalent
relations:

cn(ζ, r) =
√

1 − r2

2r

(
ξ − 1

ξ

)
dn(ζ, r) =

√
1 − r2

2

(
ξ +

1

ξ

)
. (24)

Then the Lax pair (13) and (14) for system (12) becomes

∂τ� =
(

−i
(
ξ 2 − 1

ξ 2

)
ξE∗ + 1

ξ
E

−ξE − 1
ξ
E∗ i

(
ξ 2 − 1

ξ 2

)
)

� (25)

∂χ� = 2r2(1 − r2)3/2ξ 2

4r2 − [(1 − r2)ξ 2 − 1 − r2]2

(
−i a

r

(
ξ 2 − 1

ξ 2

)
Sz ξS∗ + 1

ξ
S

−ξS − 1
ξ
S∗ i a

r

(
ξ 2 − 1

ξ 2

)
Sz

)
� ≡ Â� (26)

where a = √
1 − r2/2, E = rEx/a +iEy/a, S = Sx +iSy/r , and τ = a2τ ′/(2r). The spectral

problem (13) is a new one to our knowledge.
In the theory of integrable systems, the spectral problems (13) and (25), likely, arise for

the first time. However, the corresponding ISTM apparatus has much in common with the
apparatus developed earlier for the related spectral problems arising when solving the Thirring
equation [15], and the nonlinear differential Schödinger equation [14]. For this reason, we
discuss only the key elements of the ISP apparatus for a potential E that decreases sufficiently
fast at infinity.

The spectral problem (25) possesses the following symmetry properties

� = M̂�(ξ ∗)∗M̂−1 (27)

where

M̂ =
(

0 1
−1 0

)
(28)

and

�(ξ ∗)∗ = �(ξ−1). (29)

A potential E(τ, χ) rapidly vanishes when τ → ±∞. We introduce the Jost functions
�, the solutions of equation (25) with the asymptotics

�± = exp (−iωσ3τ) τ → ±∞. (30)

where ω = ξ 2 − ξ−2.
We introduce the scattering matrix T̂ by the formula

�− = �+T̂ (31)

where

T̂ =
(

a∗ b

−b∗ a

)
. (32)

The dependence of the scattering data versus χ is governed by the equation

∂χ T̂ = −T̂ e−iσ3ωτ Â(τ = −∞) eiσ3ωτ + e−iσ3ωτ Â(τ = ∞) eiσ3ωτ T̂ . (33)

We present the Jost function in the integral form

�+(τ ) = e−iσ̂3[ωτ+µ(τ)]

+
∫ ∞

τ

(
[Q1(τ, s) + ξ−2Q2(τ, s)] e−iµ(τ) −[ξK∗

1 (τ, s) + ξ−1K2(τ, s)] e−iµ(τ)

[ξK1(τ, s) + ξ−1K∗
2 (τ, s)] eiµ(τ) [Q∗

1(τ, s) + ξ−2Q∗
2(τ, s)] eiµ(τ)

)
× e−iσ̂3ωs ds (34)
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+ −

− +

� +

−
−
+

Im(ξ2)> 0

Im(ξ2)< 0Im(ξ2)> 0

Im(ξ2)< 0

Re(ξ)

Im(ξ)

Figure 1. The counterclockwise contour � includes the paths along the axes as shown by the
arrows. The contour encloses the first and third quadrants of Im ξ2 � 0, and that passes above all
poles in the first quadrant and below all poles in the third quadrant.

where σ̂3 is the Pauli matrix and µ(τ) is a real function, which will be determined below.
From equations (25) and (34) it follows that

E(τ, χ) = −2K2(τ, τ, χ) exp(−2iµ) (35)

E∗(τ, χ) = −2K∗
1 (τ, τ, χ) exp(−2iµ). (36)

In order for equation (34) to be valid, it is necessary that

lim
s→∞ K1,2(τ, s) = 0 (37)

lim
s→∞ Q1,2(τ, s) = 0. (38)

The following identities are valid∫
�

ξm exp(iωτ) dξ = 4πδ(τ) m = 1,−3 (39)

∫
�

ξ 2m exp(iωτ) dξ = 0 m = −1/2, 0,±1,±2, . . . (40)

where the contour of integration is shown in figure 1. Using equations (39), (40) and (34) we
derive from equation (31) the following Marchenko equations

K∗
1 (τ, y) = F0(τ + y) +

∫ ∞

τ

[Q1(τ, s)F0(s + y) + Q2(τ, s)F−1(s + y)] ds (41)

K2(τ, y) = F−1(τ + y) +
∫ ∞

τ

[Q1(τ, s)F−1(s + y) + Q2(τ, s)F−2(s + y)] ds (42)

Q∗
1(τ, y) = −

∫ ∞

τ

[K1(τ, s)F1(s + y) + K∗
2 (τ, s)F0(s + y)] ds (43)

Q∗
2(τ, y) = −

∫ ∞

τ

[K1(τ, s)F0(s + y) + K∗
2 (τ, s)F−1(s + y)] ds (44)

where y � τ . The kernel F has the form

Fm(y, χ) =
∫ ∞

−∞

b(χ)

a(χ)

ξ 2m e−iωy

2π
dξ − i

∑
k

ξ 2m
k ck(χ) e−iωky

a′(ξk, χ)
(45)

where ωk = ξ 2
k − ξ−2

k .
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I

Figure 2. Intensity of solitons I = |E|2 versus τ for λ1 = exp(iφ1), φ1 = π/3 (solid line) and
φ1 = π/5 (dashed line).

The simplest solution corresponds to a single pole ξ1 lying in the first or third quadrants
of the complex plane and the conditions, E(±∞, χ) = 0, Sz(0, χ) = −1. Owing to the
symmetry property (29) ξ1 obeys the condition |ξ1| = 1. Let ξ1 = exp(iφ1), where φ1 ∈ R.
The one-pole solution can be derived by solving the system (33), (41) and (45). This solution
is

E(τ, χ) = −2|sinφ1| exp[iγ1 − iφ1/2]

|cosh[4 sin φ1θ + γ2 − iφ1/2]| (46)

where

θ = τ − aχ

2
√

r2 cos2(φ1/2) + sin2(φ1/2)
γ2 = ln

∣∣∣∣ c1

2a′(ξ1)

∣∣∣∣
and γ1 = arg[(−ic1)/(2a′(ξ1))] = Nπ,N = 0, 1, due to symmetry (29). The soliton intensity
for different φ1 is shown in figure 2.

Note that for the two-soliton solution corresponding to a pair of poles ζ1 = η, ζ2 = 1/η

the symmetry property (29) does not lead to restrictions such as |η| = 1.

4. Conclusion

We find an integrable system of evolution equations describing the dynamics of acoustic fields
in paramagnetic crystal with spin-1/2 impurities. This system can be used for investigation
of acoustic pulse formation propagating in a crystal with a rhombic symmetry. Evolution
equations are derived under the assumption of the unidirectional propagation of pulses and
without using the approximation of slow changing amplitudes and phases of acoustic fields.

We estimate the parameters of fields and the medium required for observation of formation
of the acoustic picosecond pulses. Consider, for instance, a crystal of MgO containing
paramagnetic impurities Fe2+ at the temperature T = 4 K. Let the magnetic field strength be
such that the Zeeman splitting is ω0 = 1012 s−1. This corresponds to the realistic strength
of the magnetic field. Coefficients of the medium are as follows [12]: Gγ ∼ 10−13 erg,
n ∼ 1019 cm−3, n0 ∼ 3 − 4 g cm−3, v ≈ 5 × 105–106 cm s−1, λγ ≈ 5 × 1011–1012 din cm−2.
Under such conditions the peak intensity of the acoustic pulse can be I ∼ 108 V cm−2 and the
duration can be τp ∼ 10 ps.
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Recently, the observation of the phonon avalanche has been described in [6, 7]. The
authors of these papers have explored the nonsolitonic regime of spin–sound interaction,
which is analogous to the superradiance phenomena in nonlinear optics. Their theoretical
treatment of the observed effects was based on using the Maxwell–Bloch equations describing
quasi-monochromatic pulse dynamics in a two-level medium. The conditions of these
experiments are available for observation of the unidirectional soliton formation of picosecond
duration in the system considered in the present paper. The generation and investigation of
the acoustic pulses with picosecond duration in another physical system is described, for
example, in [3].

The dynamics of a few-cycle acoustic pulses in a crystal possesses some peculiarities and
novel features in comparison with that of quasi-monochromatic pulses. It is known that for
picosecond time scale τp in some crystals losses associated with sound pulse propagations
are proportional to τ−2

p [1]. For quasi-monochromatic pulses with the carrying frequency

ω0 durations are at least of the order �10 ω−1
0 . Therefore, for the same durations losses

corresponding to a few-cycle pulses are at least 100 times less than those of a quasi-
monochromatic pulse. The second difference that follows from the obtained solution (46)
is that the form of soliton essentially depends on the initial phase α1 (see figure 2) contrary to
the case of soliton solution of the sine-Gordon equation or the Maxwell–Bloch equation. The
latter two models have been used for the description of dynamics of quasi-monochromatic
acoustic pulse evolution equations by the authors of [4, 8, 9]. The initial phase of soliton
solutions of these models does not have any influence on the amplitude and duration of a pulse.
We reveal that for few-cycle acoustic pulses there are new opportunities for the determination
of a pulse phase by controlling its amplitude. This property may be useful for the diagnostic
of the medium by using propagating acoustic solitons [1]. Thus, studies of the formation of
the picosecond acoustic pulses and the investigation of their dynamics in paramagnetic crystal
with spin impurities are of practical interest. Effects related to the anisotropy of interaction of
acoustic wave and spin system are revealed in the asymmetrical distribution of energy between
the transverse components of the acoustic wave. These components are proportional to the
real and imaginary parts of solution (46).

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project no
03-02-16297) and by the interdisciplinary integrated basic research project ‘Theoretical and
Experimental Studies of the Fabrication of Nanosized Regular Structures (Photonic Crystals)
and Their Functional and Nonlinear-Optical Properties’ No. 84, and Program of Basic Research
of the Presidium of the Russian Academy of Sciences, grant No. 8-2.

References

[1] Achenbach J D 1975 Wave Propagation in Elastic Solids (Amsterdam: North-Holland)
[2] Leung K P, Yao S S, Doukas A G and Alphano R P 1985 Phys. Rev. B 31 942
[3] Hao H-Y and Maris H J 2001 Phys. Rev. B 64 064302
[4] Shiren N S 1970 Phys. Rev. B 2 2471
[5] Denisenko G A 1971 Zh. Eksp. Teor. Fiz. 60 2269
[6] de Wijn H W, van Walree P A and Arts A F M 1999 Physica B 263–264 30
[7] Tilstra L G, Arts A F M and de Wijn H W 2002 Physica B 316–317 311
[8] Adamashvili G T 1999 Physica B 266 173
[9] Voronkov S V and Sazonov S V 2001 Phys. Solid State 43 2051

[10] Kittel C 1963 Introduction to Solid State Physics (New York: Wiley)



Transverse acoustic soliton in anisotropic paramagnetic crystal 8085

[11] Zakharov V E, Manakov S V, Novikov S P and Pitaevsky L P 1984 Soliton Theory (New York: Plenum)
[12] Tucker E B and Rampton V W 1972 Microvawe Ultrasonic in Solid State Physics (Amsterdam: North-Holland)

p 29
[13] Gibbon J D, Coudrey P J, Eilbeck J K and Bullough R K 1973 J. Phys. A: Math. Gen. 6 1237
[14] Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[15] Kuznetsov E A and Mikhailov A V 1977 Theor. Math. Phys. 30 303


